Polynomial Upwind Schemes for Hyperbolic Systems

نویسندگان

  • Pierre Degond
  • Giovanni Russo
  • Philippe Villedieu
چکیده

In this paper, we present an upwinding methodology for systems of conservation laws. Our aim is to construct upwind schemes which do not require the extraction of the eigensystem of the jacobian matrix (but just the knowledge of the eigenvalues) and rely on the introduction of an appropriate polynomial approximation. @U @t + @F(U) @x = 0; t > 0; x 2 I R ; (1) avec U(x; t) un etat de l'espace des phases U I R p. Si on consid ere une condition initiale du type U(x; 0) = La r esolution de ce probl eme de Riemann lin earis e autour d'un etat moyen entre U L et U R fait intervenir p ondes s epar ees par p + 1 etats interm ediaires. La fonction ux num erique r esultante est donn ee par (3). L'inconv enient de cette m ethode est qu'elle n ecessite de conna^ tre analytiquement la d ecomposition spectrale de la matrice de Roe, ce qui n'est pas toujours simple. Aussi dans certains sch emas 3], la matrice de Roe est remplac ee par la matrice jacobienne du ux de (1) calcul ee sur un etat moyen (U) (on choisit souvent une simple moyenne arithm etique), ce qui aboutit au ux num erique (4). Toutefois, m^ eme dans ce cas, il subsiste le probl eme du calcul num erique des vecteurs propres, qui repr esente souvent un co^ ut important en temps calcul. Notre m ethode consiste a construire une approximation polyn^ omiale de j @F @U (U)j sans extraire le syst eme propre de la matrice. On 2 choisit pour cela des polyn^ omes qui interpolent les valeurs absolues de valeurs propres de la matrice jacobienne. Pour un probl eme 1D, le sch ema (6) avec le ux num erique : ce genre de probl eme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

AIAA 2001–2623 Multi-Dimensional Upwind Constrained Transport on Unstructured Grids for ‘Shallow Water’ Magnetohydrodynamics

Novel Multi-dimensional Upwind Constrained Transport (MUCT) schemes on un-structured triangular grids are described. Constrained Transport (CT) discretizations conserve the divergence-free nature of divergence-free vector fields on the discrete level. Multi-dimensional Upwind (MU) schemes generalize the concept of dimensionally split upwind schemes for hyperbolic systems to truly multidimension...

متن کامل

Fourth-Order Nonoscillatory Upwind and Central Schemes for Hyperbolic Conservation Laws

The aim of this work is to solve hyperbolic conservation laws by means of a finite volume method for both spatial and time discretization. We extend the ideas developed in [X.-D. Liu and S. Osher, SIAM J. Numer. Anal., 33 (1996), pp. 760–779; X.-D. Liu and E. Tadmor, Numer. Math., 79 (1998), pp. 397–425] to fourth-order upwind and central schemes. In order to do this, once we know the cell-aver...

متن کامل

Central-Upwind Schemes on Triangular Grids for Hyperbolic Systems of Conservation Laws

We present a family of central-upwind schemes on general triangular grids for solving two-dimensional systems of conservation laws. The new schemes enjoy the main advantages of the Godunov-type central schemes—simplicity, universality, and robustness and can be applied to problems with complicated geometries. The “triangular” central-upwind schemes are based on the use of the directional local ...

متن کامل

Application of a Multi-dimensional Limiting Process to Central-Upwind Schemes for Solving Hyperbolic Systems of Conservation Laws

In this paper, we study semi-discrete central-upwind difference schemes with a modified multidimensional limiting process (MLP) to solve two-dimensional hyperbolic systems of conservation laws. In general, high-order central difference schemes for conservation laws involve no Riemann solvers or characteristic decompositions but have a tendency to smear linear discontinuities. To overcome this d...

متن کامل

MUSTA schemes for multi-dimensional hyperbolic systems: analysis and improvements

We develop and analyze an improved version of the Multi-Stage (MUSTA) approach to the construction of upwind Godunov-type fluxes whereby the solution of the Riemann problem, approximate or exact, is not required. The new MUSTA schemes improve upon the original schemes in terms of monotonicity properties, accuracy and stability in multiple space dimensions. We incorporate the MUSTA technology in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999